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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

ANALYSIS OF THE LIQUID-METAL TURBOJET CYCLE FOR
PROPULSION OF NUCLEAR POWERED ATRCRAFT

By William W. Wachtl and Frank E. Rom

SUMMARY /7?34’

An analysis of the nuclear powered liquid-metal turbojet cycle is
presented for a wide range of engine operating conditions at flight
Mach numbers of 0.9 and 1.5, and at altitudes of 30,000 and 50,000 feet.

The method of analysis and working charts are presented to facili-
tate investigations beyond the scope of this report.

The thrust per engine plus heat exchanger weight is optimized at
the four flight conditions for heat exchanger inlet Mach number,
compressor pressure ratio, and turbine-inlet temperature for a range of
liquid-metal-to-air heat exchanger effective wall temperatures.

Airplane gross weight and reactor heat release is presented for
typical values of airplane lift-drag ratio, structure to gross weight
ratio, and sum of reactor, shield, payload, and auxiliary weights. The
effect of varying these assumptions and of including nacelle drag is
shown along with the effect of flight conditions.

INTRODUCTION

Analyses are being made at the NACA Lewis laboratory to determine
the characteristics of various aircraft propulsion systems utilizing
nuclear energy. A study of the direct-air turbojet cycle was made in
reference 1 and additional results of this study are presented in
references 2 and 3. A preliminary comparison of the direct air, helium,
and ligquid-metal turbojet cycles is made in reference 3.
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The present report gives an analysis of the design point perform-
ance of nuclear powered liquid-metal turbojet engines. The variables
considered are turbine-inlet temperature, compressor pressure ratio,
liquid-metal-to-ailr heat exchanger wall temperature, heat exchanger
air inlet Mach number, altitude, and flight speed. The compressor
pressure ratio, heat exchanger inlet Mach number, and turbine-inlet
temperature were optimized for maximum engine net thrust per engine plus
heat exchanger weight at several values of heat exchanger effective wall
temperature. It is shown that for fixed values of airplane lift-drag
ratio, and structure to gross weight ratio, the thrust per engine plus
heat exchanger weight is the most important parameter in determining
gross weight. TInasmuch as this parameter 1s so important, and because
of the uncertainty in the lift-drag ratio attainable at supersonic
speeds, in shield and auxiliary weights, and in allowable resactor heat
release rates, engine performance is emphasized in this report. How-
ever, curves are presented which enable rapid determination of airplane
gross weight for any set of shield and auxiliary weights, payload,
structure to gross weight ratio, and airplane lift-drag assumptions.

In addition, curves of heat input per pound of air and net thrust per
pound of air per second are presented to enable the determination of
reactor heat release necessary to operate the required turbojet engines.

Airplane gross weight and reactor heat release are calculated for
several flight conditions for various engine operating conditions.
Typical values of shield, auxiliary equipment, and payload weights,
and aerodynamic assumptions were selected to facilitate these calcu-
lations. The effect of varying the assumptions necessary to calculate
gross weight and reactor heat release from engine data is presented.
In addition, the effect of varying flight conditions upon gross weight
and reactor heat release is also indicated.

SYMBOLS

The following symbols are used in this report:
A area, £t2
cp specific heat at constant pressure, Btu/lb °R
Cp drag coefficient
Cy nozzle velocity coefficient

d hydraulic diameter of tubes, ft

D drag, 1b
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=2

wqg

'_-l

free flow ratio, flow area divided by frontal area
thrust, 1b

acceleration due to gravity, ft/secz
enthalpy, Btu/lb

air enthalpy change, Btu/lb

778 ft-1b/Btu

thermal conductivity, Btu/sec ft2 OR/ft
tube length, ft

1ift, 1b

Mach mmber

static pressure, 1b/ft2

total pressure, 1b/ft2

PaVa

dynamic pressure, P ) lb/ftz

reactor heat release rate, Btufsec

total temperature, °R

total temperature change, °r

over-all heat transfer coefficient, Btu/sec £t2 OR
reactor volume, ft3

velocity, ft/sec

weight flow, 1b/sec

weight, 1b

ratio of total pressure to NACA standard sea level static pressure,

£
2116

efficiency
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T ratio of specific heats

v Viécosity, lb/ft-sec

o demsity, 1b/ft°

2] ratio of total temperature to NACA standard sea level static
temperature, 3%5

Subscripts:

a air flow

c compressor

e engine

T frontal

g gross

J Jet

X shield + reactor + payload + auxiliary

1 liquid metal

n net

N nacelle

r reactor

m reactor maximum wall

s structure

t turbine

T engine plus heat exchanger

W exchanger effective wall

X exchanger
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y reactor-wall-to-1iquid metal
@ small stage

0 free stream

1 compressor inlet

2 compressor outlet

2' inlet to heat exchanger (in tubes)
3 turbine inlet

4 turbine outlet

DESCRIPTION OF THE CYCLE

A schematic diagram of the liquid-metal turbojet cycle is shown
in figure 1. It is a binary system incorporating a closed liquid cycle
and an open air cycle. A nuclear reactor is used as the heat source,
and a heat exchanger replaces the standard engine combustion chamber.

The liquid-metal coolant is pumped through the reactor where it is
heated by contact with walls of the reactor flow passages. From the
reactor the liquid metal flows through the heat exchanger where it gives
up energy to the air; it is then ducted back to the reactor thus com-
pleting its cycle.

Air enters the diffuser of the turbojet engine, is compressed by
the compressor, and then passes through the heat exchanger taking heat
from the liquid metal. This hot compressed air expands through the
turbine which extracts the required energy to run the compressor. The

air then expands through the exhaust nozzle to provide the propulsive
thrust.

ASSUMPTIONS

Engine component efficiencies. - In the present analysis the
efficiencies assumed for the engine components are, insofar as possible

representative of the best current practice. The values used are as
follows:

S
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Compressor small-stage efficiency, 0.88
Turbine adiabatic efficiency, .90
Exhsust nozzle velocity coefficient (full expansion), .97

The inlet diffuser characteristics are shown in figure 2 where the
ratio of actual to theoretical total pressure is plotted against
flight Mach number. The subsonic portion of the curve assumes a 0.08
qo loss in dynamic pressure, and the supersonic portion was obtained

from reference 4.

Engine weight. - The engine weight per pound of corrected air flow
is shown in figure 3 as a function of compressor pressure ratio. The
curve was obtained from an NACA weight analysis of turbojet engines
and includes all engine components except the combustion chambers.

The air flow per unit compressor frontal area is assumed to be 25 pounds
per second per square foot corrected to static sea level conditions and
is assumed to be independent of engine size for this analysis.

Heat exchanger. - The liquid-metal-to-air heat exchanger is assumed
to be of the tubular counterflow type with air flowing through the tubes,
and liquid metal flowing in the spaces between the tubes. The weight
is computed assuming that the tubes are made of stainless steel having
an internal diameter of 0.25 inch and a wall thickness of 0.01 inch,
and that the space around the tubes is filled with lithium. The weight
of the shell, headers and baffles is included. The exchanger free flow
factor Aa/Af is 0.65. The exchanger is assumed to have a constant

effective wall temperature. The exchanger l/d expressed in the para-

[:Aauw 0.2 1 . . .
meter ( ) (—) (from reference 5) is shown in figure 4 as a
Wy d a’jx

function of alr inlet temperature, air outlet temperature, and exchanger
effective wall temperature. The heat exchanger air pressure drop
expressed as the ratio of the outlet total pressure to air inlet total
pressure is shown in figure 5. The pressure ratio is plotted as a
function of air inlet temperature, air outlet temperature, and exchanger
effective wall temperature for air inlet Mach numbers of 0.12, 0.18,

and 0.20 which cover the range of values investigated.

The assumption of an effective wall temperature greatly simplifies
heat transfer calculations with no loss in accuracy. Only a negligible
error in heat exchanger pressure ratio is introduced by this assumption.

Reactor maximum wall temperature. - The reactor maximum wall
temperature is computed by meking the following assumptions: (1) the
heat exchanger effective wall temperature is equal to the average of
the inlet and ocutlet liquid-metal temperature; (2) that the difference
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between the reactor wall temperature and liquid-metal temperatures is
constant; and (3) that the liquid-metal temperature rise is fixed for
each flight condition so that the liquid-metal velocity is 15 feet
per second at optimum engine conditions.

Reactor, shield, and auxiliary weights. - A fixed value of
190,000 pounds is assumed for Wk, the sum of the reactor, shield

assembly, payload, and auxiliary weights (pumps, piping, chemical fuel,
etc.). This weight was arbitrarily assumed in order to calculate
typical airplane gross weights from the engine data. Assuming a fixed
value of Wg allows a wide latitude of weight distributions among

the components of Wg. Inasmuch as gross weight is a direct function
of Wk, the gross weight for any other desired value of W can easily
be found. The effect of selecting different fixed values of Wx 1is
shown later in the report.

For any given reactor size, reference 6 indicates a negligible
variation of shield weight with reactor heat release Q. Since this
is true and since the payload and auxiliary weight are relatively fixed,
no variation of Wg with Q 1is considered.

Airplane assumptions. - The structure to gross weight ratio Ws/Wg,

of the airplane in general is assumed to be 0.35 for the gross weight
computations. The airplane design L/D, exclusive of nacelles, is
assumed a function of Mach number as follows:

Mach mumber L/D

0.9 18
1.5 9
2.0 5.5

Variation of structure to gross weight ratio Wg/Wg, and L/D from the
above values is considered later in the report.

Nacelle drag Dy, is generally considered to be zero, however, in

cases where Dy 1is included, the effect is shown for the following
range of drag coefficients:

Subsonic Cp,N» 0 to 0.08
Supersonic Cp,N, O to 0.4

The air flow per unit nacelle frontal area, corrected to static sea
level conditions is assumed to be 15 pounds per second per square foot
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compared to 25 pounds per second per sqQuare foot of compressor frontal
area. This assumption accounts for structure space.

METHODS

The turbojet cycle as presented in this analysis is optimized for
maximum net thrust per engine plus exchanger weight. It is shown in
the following discussion that this parameter gives the minimum airplane
gross weight for fixed values of airplane L/D, structure to gross
weight ratio ws/wg, and the sum of reactor, shield assembly, payload

and auxiliary weights Wg.

Weight Balance

The gross weight of an airplane is equal to the sum of all the
component weights.

Wg = WK+ Ws + We + Wy (1)

These weights can be separated into two groups: (l) weights relatively
independent of gross weight; and (2) weights dependent upon gross

welight. The first group consists of the sum of reactor, shield assembly,
payload, and auxiliary weight Wg, where the auxiliary weight includes
such items as the control equipment, pumps, piping, and auxiliary fuel
required for thrust augmentation. Group two consists of the aircraft
structure weight, engine weight, and heat exchanger weight Wg + We + Wx.

The structure weight is given by

Ws = (;2) Wg (2)

The engine weight plus heat exchanger weight is

W
We+wX=WT=Fr_1—g_£ (5)
Wwp D
where
Wa Vo
Pn = - - 4
n dJd g DN ()
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Combining equations (1), (2), and (3)

g = - (5)

Ws 1
] - = o ——
Vg (EQ) bd L
W D

Inspection of equation (5) shows that the gross weight is a minimum
when the net thrust per engine plus exchanger is a maximum for fixed
values of Wy, ws/wg, and L/D, consequently a study of engine performance
is sufficient for evaluating a given cycle in a nuclear powered airplane.
The analysis presented in this report optimizes Fn/WT and is therefore
not restricted by particular weight and airplane assumptions.

Cycle Analysis

The performance of the turbojet cycle with a heat exchanger in
lieu of the conventional burners is calculated for a range of flight
and engine variables in order to obtain optimum engine performance.

The flight conditions investigated are flight Mach numbers of 0.9 and
1.5 at altitudes of 30,000 and 50,000 feet. The compressor pressure
ratio is varied from 2 to 15; the turbine-inlet temperature from 1200°
to 2300° R; the heat exchanger effective wall temperature from 1400° to
2600° R; and the heat exchanger inlet Mach nunbers from 0.12 to 0.20.

The stations in the cycle are numbered according to the diagram in
figure 1.

Calculation of net thrust per pound of air per second, Fn/wa. -
The compressor inlet temperature Tj, and pressure P}, were determined
at the assumed flight conditions and corresponding diffuser pressure
ratio Pl/PO (fig. 2). The enthalpies at each station and the tempera-
ture rise through the compressor corresponding to the selected pressure
ratio, were determined from the thermodynamic property tables and
methods presented in reference 7. The compressor work per pound of
air is then

Ahe = hp - hy, Btu/lb air

The compressor outlet temperature T,, and pressure Pp, are identical

to the heat exchanger inlet temperature Tg', and pressure Pg'. Know-

ing the heat exchangeg inlet temperature, and with assumed values of
inlet Mach number M, , heat exchanger effective wall temperature Ty,

- | A )
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and turbine-inlet temperature T3, the heat exchanger pressure ratio
P3/Pg, is found from figure S. The turbine work is equal to the
compressor work, so the turbine exit enthalpy is

hy = hz - Ah,, Btu/lb air

The turbine outlet temperature and the turbine pressure ratio are found
by the charts and methods of reference 7. The tail-pipe pressure ratio
is then

P P P P P P

Po _Pa B P2 B, %o
po P3 P2 P1 Po ©Po

The Jjet thrust per pound of air Fj/wa, is a function of tail-pipe

pressure ratio and the square root of the tail-pipe temperature, and is
obtained from the following equation for a complete expansion process.

-1

+=

b Ml_@z)Y
Vg g Py
The net thrust per pound of air Fn/wa, is obtained by dividing equa-

tion (4) by wa

2-2.2.2 (6)

Where the nacelle drag per pound of air per second DN/wa is defined
by

X _ oy a <Af %0 > V% (7)

Va Waa/00/N B0

W
where (Kgﬂé§§) is the corrected air flow per unit nacelle
0 ‘N

frontal area (15 lb/sec-sq ft). The effect of nacelle drag is not
included in the general engine analysis, but is introduced later in
the discussion to show the effects on airplane performance.

The preceding methods were used to calculate a set of generalized
performance charts which were used in the actual analysis. These
charts have been included in appendix A.
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Engine plus heat exchanger weight. - The weight of the turbojet
engine less combustors per pound of air per second We/wa, is found
from figure 3 at the desired compressor pressure ratio. The heat
exchanger weight per pound of air per second is a function of the
exchanger air flow per unit area (wa/Aa)x and the exchanger 1/d
as given by

— =1.9 (f;—Zx%)x (8)

where the constant 1.9 is evaluated from the assumption of stainless
steel tubes, with lithium filling the spaces between the tubes.

The exchanger air flow per unit flow area is found from the
exchanger inlet conditions Pp', To', and M2!. The heat exchanger

0.2
l/d is found from the parameter, [(éﬁ %F) (%)] shown in figure 4.
a X

The hydraulic diameter is assigned and the viscosity Hy» 1is evaluated
at the effective wall temperature Ty. The engine plus exchanger

weight per pound of air per second WT/wa, is then the sum of We/wa
and Wy/vg.

Thrust per pound of engine plus exchanger. - The thrust per pound
of engine plus exchanger is calculated from the net thrust and engine
weight per pound of air per second.

kg AL (9)
Wp  Wr/wg

The Fp/Wp 1is plctted as a function of turbine-inlet temperature, heat
exchanger inlet Mach number and compressor pressure ratio for all the
flight conditions considered.

Heat input. - The heat input to the turbojet is found by subtract-
ing the enthalpy at the compressor cutlet hgp, from the enthalpy at
the turbine inlet hsz.

OAhx = hz - hp, Btu/lb air

Airplane gross weight. - The method of determining engine perform-
ance in terms of F,/w,, Fn/WT, and Ahy has been given. In order to
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translate this engine data to airplane performance, certain assumptions
regarding airplane 1ift drag L/D, structure to gross weight ratio
ws/wg, and the sum of shield, reactor, payload, and auxiliary weight
Wg, must be made. If values are assigned to these quantities, equa-
tion (5) can be used to calculate airplane gross weight. Figure 6 has
been prepared from equation (5) so that Wy, can be found more con-
veniently. wg/wK is plotted as a function of thrust per engine plus
exchanger weight Fn/WT, for a range of L/D and for Ws/Wg equal to
0.35. The airplane gross weight is found by multiplying the ordinate
evaluated at the design Fn/WT and L/D by the assigned value of Wg.

Engine air flow. - The air flow required for a given airplane is
found from the gross weight Wg, L/D, and net thrust per pound of air

per second Fn/wa, by the relation

Wg = ———— (10)

Reactor Calculations

Heat release. - The heat release rate required from the reactor,
neglecting losses, is obtained by multiplying the enthalpy rise per
pound of air through the heat exchanger by the engine air flow

Q = Ahx Wa Btu/sec (ll)

Inasmuch as the heat losses in piping and heat required for running
the pumps and auxiliaries are chiefly a function of the individual
installation, no attempt was made to include these requirements in the
heat release curves of this analysis. In order to account for these
quantities, the heat release required of the reactor must be increased
accordingly.

Reactor maximum wall temperature. - The reactor maximum wall
temperature is determined by the liquid-metal temperature rise through
the reactor ATj;, the average liquid-metal temperature {assumed to be

Tw), and the reactor-wall-to-liquid-metal temperature difference ATy.
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Reactor wall
temperature

Ty 4Ty

Heat exchanger wall temperature 1

In determining reactor maximum wall temperature Ty, the heat exchanger
effective wall temperature Ty, is assumed to be the average liquid-
metal temperature. A constant temperature difference based on the
assumptions of constant heat generation along the reactor length is
assumed between the reactor wall and liquid metal. The equation for
calculating the maximum reactor wall temperature is then

Ty = Ty + 1/2 ATy + ATy (12)
where
Q
AT, =
i (pVCPYI (fAf)r
and
-9
ATy - 1
40y athr) r
where from reference 8,
0.8
k vd..c
U, = = |7+ 0.025 (D—GLB)
a, x /1
Equation (12) then becomes
on s 2 (2) [ e .
2 \TAz/y l(pVep); 1
Pl eyy=
d/r

For each flight condition, the liquid-metal temperature rise is held
constant at a value which gives a liquid-metal velocity of 15 feet per
second at the optirum compressor pressure ratio and turbine-inlet

temperature. ~
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RESULTS AND DISCUSSION

The performance of the liquid-metal nuclear-powered turbojet
cycle is presented by first discussing engine performance and the
effect of design variables on engine performance. The engine perform-
ance is emphasized in this report, however, a discussion of the
performance of the airplane-engine combination in terms of airplane
gross weight and reactor heat release is also considered. The
remainder of the discussion is concerned with the effect of changing
airplane and weight assumptions on airplane gross weight and reactor
heat release.

Engine Performance

The net thrust per engine plus heat exchanger weight of the turbo-
jet engine is optimized for exchanger inlet Mach number, compressor
pressure ratio, and turbine-inlet temperature for a range of heat
exchanger effective wall temperatures. The data are presented for
altitudes of 30,000 and 50,000 feet, and for flight Mach numbers of
0.9 and 1.5. TIn addition, net thrust per pound of air per second and
air enthalpy rise through the heat exchanger are shown for the corres-
ponding engine and flight conditions to completely specify engine
performance.

Heat exchanger inlet Mach number. - The effect of heat exchanger
air inleft Mach number on thrust per engine plus heat exchanger weight
is illustrated in figures 7(a) and 7(b) for an altitude of 30,000 feet
and at flight Mach numbers of 0.9 and 1.5, respectively. For each
assumed value of heat exchanger effective wall temperature and turbine-
inlet temperature there is a value of inlet Mach number which gives
maximm Fp/Wp. For a fixed value of Tz, low inlet Mach number gives

low pressure drop and consequently higher thrust, but also high
exchanger weight due to the large frontal area required. High inlet
Mach numbers result in high pressure drop reducing the engine thrust,
but also giving low exchanger weight due to the smaller frontal area.
Consequently, a heat exchanger inlet Mach number which gives a maximum
value of thrust per pound of engine plus exchanger weight is expected.
The optimum (i.e. maximum) values of Fn/WT are indicated in both

figures by cross marks.

The optimum inlet Mach numbers range from about 0.14 to about 0.18
for all the compressor pressure ratios, turbine-inlet temperatures, and
exchanger wall temperatures shown for the flight Mach number of 0.9.
For the flight Mach number of 1.5 shown in figure 7(b) the optimum
inlet Mach mwmbers range from about 0.14 to about 0.22. Curves similar
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to these were plotted for all the flight conditions and engine opera-
ting variables considered to determine the optimum exchanger inlet Mach
number for each condition and all the values fell within the ranges
shown on the figures.

Optimum compressor pressure ratio. - The net thrust per engine
plus heat exchanger weight for various values of exchanger effective
wall temperature, turbine-inlet temperature, and for optimum inlet
Mach number is shown as a function of compressor pressure ratio in
figures 8 to 11. The data are presented at altitudes of 30,000 and
50,000 feet and for flight Mach numbers of 0.9 and 1.5. The corres-
ponding values of thrust per pound of air per second are also shown.
The solid lines represent constant T3, and the dashed lines are the
envelope curves for maximum Fn/wT at any pressure ratio. These

figures indicate that for each exchanger wall temperature and turbine-
inlet temperature there is an optirum compressor pressure ratio. For
all the heat exchanger and turbine-inlet temperature combinations
shown the optimum pressure ratio varies from about 3 to 8 for both
altitudes at a flight Mach number of 0.9. At a flight Msch number of
1.5 the optirum compressor pressure ratio varies from about 2.5 to 6
for both altitudes.

Optimum turbine-inlet temperature. - For each assumed heat exchanger
effective wall temperature T, there is a value of turbine-inlet

temperature which gives the maximum Fn/Wp. The thrust per pound of

air per second is increased by increasing the turbine-inlet temperature
T3, however, the exchanger pressure drop is also increased due to the

higher exchanger l/d required to obtain the higher Tz for a given

Ty- This increased pressure drop with increasing l/d will eventually
counterbalance the increase in thrust due to the increased turbine-
inlet temperature. In addition, the exchanger weight increases due

to the larger l/d, and consequently there exists an optimum turbine-
inlet temperature.

As observed in figures 8 to 11, the best turbine-inlet temperature
is closer to the heat exchanger effective wall temperature Ty, at

lower values of Ty than at the higher values of Ty.

Enthalpy rise through heat exchanger. - The enthalpy rise per unit
air flow through the heat exchanger corresponding to the thrust per
engine plus exchanger weight is shown at the four flight conditions in
figures 12(a) to 12(d). The enthalpy rise is given as a function of
compressor pressure ratio for a range of turbine-inlet temperatures.
These curves are included at this point to completely define engine
performance, and thus conveniently group all the engine data necessary
for gross weight and heat release calculations together.

o
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Effect of heat exchanger effective wall temperature on optimum
engine performance. - The performance of the liquid-metal nuclear-
powered turbojet engine is summarized in figures 13(a) to 13(d). Maxi-
mum thrust per engine plus exchanger weight Fn/WT is plotted against

the heat exchanger effective wall temperature Ty. The corresponding
values of net thrust per pound of air per second Fn/wa, heat addition
to the air Ahy, optimum compressor pressure ratio Pp/Pj, optimum
turbine-inlet temperature Tz, and difference between the exchanger

effective wall temperature and optimum turbine-inlet temperature
Tw-T3 are also shown. For any Ty, the optimum engine performance is

readily obtained from these curves.

The optimum Pg/Pl at altitudes of 30,000 and 50,000 feet for

optimum turbine-inlet temperature varies from 4 to 7.5 for a flight
Mach number of 0.9, and from 2.5 to 5.5 for a Mach number of 1.5.

The temperature difference Ty-Tz varies from 150° to 250° R for
a Mach number of 0.9 for a range of Ty from 1600° to 2400° R. At a
Mach number of 1.5, Ty-T3 varies from 150° to 550o R for a range of
Tw from 1600° to 2600° R.

The optimum heat exchanger inlet Mach number Ms: at optimum
P2/P{ and Tz varies from 0.15 to 0.16 at a Mach number of 0.9, and

varies from 0.18 to 0.19 at a Mach number of 1.5. No noticable trends
with Ty were apparent, consequently no plot of optimum Mo against

Ty 1is included.

Effect of engine and exchanger weight on optimum thrust per pound
of engine and exchanger. - At a given value of heat exchanger effective
wall temperature the optimum compressor pressure ratio, heat exchanger
inlet Mach number, and turbine-inlet temperature for maximum thrust per
pound of engine plus exchanger is not affected by the engine weight
assumption if the relative variation of engine weight with compressor
Pressure ratio remains unchanged from that given by figure 3.

The optimum compressor pressure ratio, heat exchanger inlet Mach
number, and turbine-inlet temperature are also not affected by the heat
exchanger weight assumption (equation 8) as long as the exchanger
weight is assumed to vary directly with air flow area and length
diameter ratio of the passages. These changes in heat exchanger and
engine weight assumptions would change the magnitude of Fn/WT but

would not change the optimum Pz/Pl, Mo:, or Tgz.
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Airplane Performance

The airplane performance for the liquid-metal turbojet is shown
in figures 14 to 17 in terms of airplane gross weight and reactor heat
release. For all the figures presented the structure to gross weight
ratio is assumed to be 0.35. The airplane lift-drag ratios at the
flight Mach numbers of 0.9 and 1.5 are 18 and 9, respectively. The
sum of the shield, reactor, payload, and auxiliary weights is assumed
to be 190,000 pounds. The reactor liquid-metal velocity is 15 feet
per second for all the optimum conditions shown.

Effect of compressor pressure ratio and turbine-inlet temperature. -
The effect of compressor pressure ratio and turbine-inlet temperature
upon airplane gross weight and reactor heat release is shown in
figures 14(a) to 14(d) for flight Mach numbers of 0.9 and 1.5 at
altitudes of 30,000 and 50,000 feet. The heat exchanger effective wall
temperature is 2000° R in all cases, and the turbine-inlet temperature
varies from 1500° to 1900° R. The reactor wall temperature correspond-
ing to the 2000° R heat exchanger effective wall temperature is given
in each case.

The liquid-metal velocity Vy, in figures 14(a) tc 14(d) is
15 feet per second at the optimum compressor pressure ratio (minimum
gross weight). This Vy together with the reactor heat release @
at these optimum conditions determines the reactor maximum wall tempera-
ture Ty, for the fixed 2000° R heat exchanger effective wall tempera-
ture (equation 13). For the off-optimum Pz/Pl and T3, \J) is varied
T3 feet per second in order to maintain Tp-Tyw constant.

Airplane gross weight and reactor heat release for a flight Mach
number of 0.9 at altitudes of 30,000 and 50,000 feet are shown in
figures 14(a) and 14(b). The curves indicate that over the temperature
and pressure ratio range considered, the airplane gross weight is
insensitive to T3 and P2/P) at 30,000 feet (fig. 14(a)) but it is
somewhat more sensitive at 50,000 feet (fig. 13(b)). This is true
because for the combination of the design L/D of 18 and the Fn/VT
obtained, the airplane gross weight is relatively independent of Fn/WT
as indicated in figure 6 except for very low values of Fn/WT. The
thrust per engine plus exchanger weight is higher at 30,000 feet than
at 50,000 feet and so gross weight is expected to be less sensitive
to compressor pressure ratio and turbine-inlet temperature at the lower
altitude. The minimum reactor heat release occurs at a compressor
pressure ratio which is higher than the pressure ratio which gives
minimum gross weight. For both parts (a) and (b) of figure 14 the
reactor heat release is about equal, consequently the same temperature
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difference (500 R) exists between the reactor maximum wall tempera-
ture and Ty.

Parts (c) and (d) of figure 14 present the performance of the
airplane at a Mach number of 1.5 for altitudes of 30,000 and 50,000 feet.
The curves indicate that even at the higher flight Mach number (with
lowver L/D) the airplane gross weight is insensitive to T3 and
Po/P; at 30,000 feet altitude. This is due to the high thrust per
engine plus exchanger weight at this Mach number which makes the air-
plane gross weight relatively insensitive to variations in Fn/WT as
indicated in figure 6. At the higher altitude (fig. 14(d)) the gross
weight is more sensitive to Tz and Pg/Pl because of the lower
values of Fp/Wp. The minimum reactor heat release occurs at a higher
pressure ratio than the minimum gross weight as was the case at the
lower Mach numbers. The temperature difference Tp-Ty, is higher than
for a Mach number of 0.9 because of the higher engine air flow required
and consequently greater reactor heat release necessary at a Mach num-
ber of 1.5. At an altitude of 30,000 feet (fig. 14(c)), Ty-Tw 1s
100° R, and at an altitude of 50,000 feet (fig. 14(d)), Tp-Ty is 150° R.

Effect of reactor wall temperature. - The effect of reactor wall
temperature on airplane gross weight, reactor heat release, and heat
exchanger effective wall temperature for optirmm heat exchanger inlet
Mach number, optimum compressor pressure ratio, and optimum turbine-
inlet temperature is shown in figures 15(a) to 15(c). The flight
conditions shown are the same as have been considered previously.

The airplane gross weight increases at an increasing rate as the
reactor wall temperature is reduced (fig. 15(a)). This rate of increase
is not significant, however, until a wall temperature of 1600° R is
reached for both flight Mach numbers at 30,000 feet altitude. At
50,000 feet and a Mach mumber of 0.9, Wg is insensitive to T, as low
as 1800° R, and at a Mach number of 1.5, Wg is insensitive to Tp as
low as 2000° R. In general, lower altitudes and lower Mach numbers
require lower reactor maximum wall temperatures for a given gross
weight. For example, at a gross weight of 400,000 pounds, the required
reactor maximum wall temperature is 1180° R at 30,000 feet altitude and
0.9 Mach number. The same gross weight requires a Ty of 1520° R at
50,000 feet altitude for the same Mach number. For a flight Mach num-
ber of 1.5 T, is 1420° R at 30,000 feet and 1880° R at 50,000 feet.

As is shown in figure 15(b), the reactor heat release correspond-
ing to minimum gross weight is relatively unaffected by decreasing Tn

until a value is reached at each flight condition where the reactor
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heat release increases very rapidly. This is to be expected because
the gross welght also increases very rapidly in the same range of
reactor maximum wall temperatures.

The heat exchanger effective wall temperature Ty is shown as a
function of Ty in figure 15(c), so that the engine performance

(fig. 13) corresponding to the airplane performance shown in
figures 15(a) and 15(b) can be determined.

From the foregoing figures and equaticns, a table has been prepared
and presented in appendix B which gives a more detailed listing of com-
ponent weights and reactor, engine, and heat exchanger variables than
has been shown. The table is prepared at the four flight conditions
for a heat exchanger effective wall temperature of 2000° R and a turbine-
inlet temperature of 1700° R. ’

Effect of flight conditions. - The effect of flight Mach number and
altitude on airplane gross weight and reactor heat release is presented
in figures 16 and 17. The curves are calculated for a heat exchanger
effective wall temperature of 2400° R, turbine-inlet temperature of
2000° R, compressor pressure ratio of 5, and optimum heat exchanger
inlet Mach number.

The altitude effect on gross weight and reactor heat release is
shown in figure 16 for flight Mach numbers of 0.9 and 1.5. The gross
weight and reactor heat release are relatively insensitive to altitude
from O to 35,000 feet. Above 35,000 feet the reactor heat release and
gross weight increases very rapidly.

The effect of flight Mach number on airplane gross weight and
reactor heat release is shown in figure 17 for altitudes of 30,000 and
50,000 feet. The gross weight is relatively independent of Mach number,
however, the reactor heat release increases quite rapidly with Mach
number chiefly because of the rapid decrease in airplane L/D.

Effect of Varying Assumptions

The previous analysis is based on fixed assumed values of the sum
of the shield, reactor, payload, and auxiliary weight, airplane 1ift-
drag ratio, and structure to gross weight ratio. In addition, all
the engine installations were assumed to be of the submerged type which
neglect the effect of nacelle drag. The magnitude of the effect of
taking into account different values of these assumptions and consider-
ing nacelle drag on airplane gross weight and reactor heat release is
shown in figures 18 to 21 for two turbine-inlet temperatures. The
effect of reactor diameter on unit heat release is shown in figure 22.
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Effect of sum of shield, payload, and auxiliary weight. - The
effect of varying WK on airplane gross weight and reactor heat release
is presented in figure 18 for an altitude of 50,000 feet and a Mach
mumber of 0.9. The vertical dashed line indicates the constant
190,000 pound value of Wg assumed in the previous analysis. The
curves for two engines are presented; one engine having a heat
exchanger effective wall temperature of 2000° R and a turbine-inlet
temperature of 1700° R; the other engine having a Ty of 2400° R,
and a Tz of 2000° R (T depends on Wg and Q). The optimum values
of compressor pressure ratio and heat exchanger inlet Mach number are
used. The airplane gross weight varies directly with the value of Wx
as has been discussed and shown previously in equation (7). The
required reactor heat release also varies directly with Wg inasmuch
as Q varies directly with Wg at a given engine operating point.

Effect of structure to gross welght ratio. - The effect of vary-
ing the structure to gross weight ratio Ws/Wg, on alirplane gross
weight and reactor heat release is presented in figure 19 for the same
engine and flight conditions shown in the previous figure. TFor a
reduction in Ws/Wg of 0.35 to 0.30 (14.2 percent) the gross weight
and reactor heat release decrease about 9.0 percent. The vertical
dashed line represents the Ws/Wg of 0.35 used in the previous analysis.

Effect of airplane lift-drag ratio. - The effect of varying the
airplane design point 1lift-drag ratio on airplane gross weight and
reactor heat release is shown in figures 20(a) and 20(b) for flight
Mach numbers of 0.9 and 1.5 at an altitude of 50,000 feet for the same
engine conditions as in the previous figures. At a flight Mach number
of 0.9 reducing the L/D from 18 to about 10 causes a relatively small
increase in gross weight. Reducing the L/D further results in a very
rapld increase in gross weight. The level of cycle temperature opera-
tion has a small effect on gross weight at high L/D values, but this
effect becomes large at values of L/D below about 10. Reactor heat
release is more sensitive to reduction in L/D and increases quite
rapidly with reduction in L/D. The level of cycle temperature opera-
tion has practically no effect upon heat release over the range of L/D
shown. At a flight Mach number of 1.5, figure 20(b), reducing the L/D
from 9 increases the gross weight rapidly. Increasing the L/D from
9, however, causes a relatively small reduction in gross weight. This
small effect of L/D upon gross weight at values above 9 is due to the
higher thrust per engine weight at a flight Mach number of 1.5. As in
the case of the flight Mach number of 0.9, the reactor heat release is
more sensitive to changes in L/D than is gross weight.
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Effect of nacelle drag. - The effect of engine nacelle drag on
airplane gross weight as a function of reactor maximum wall tempera-
ture is presented in figures 21(a) and 21(b) for flight Mach numbers
of 0.9 and 1.5, respectively at an altitude of 50,000 feet. The
turbine-inlet temperature, heat exchanger inlet Mach number, and
compressor pressure ratio are optimum. The coefficient of nacelle
drag Cp,N was selected to include a range of nacelle drag values

at both Mach numbers. The coefficient includes the wave and friction
drag at a Mach number of 1.5.

At a flight Mach number of 0.9 a nacelle having a drag coefficient
of 0.08, which is a reasonable value at this flight condition, increases
the gross weight less than 10 percent for reactor maximum wall tempera-
tures as low as 1500° R. This effect increases rapidly for tempera-
tures below 1500° R.

At a flight Mach number of 1.5, nacelle drag becomes very import-
ant as is shown in figure 21(b) which indicates that neglecting nacelle
drag can be very misleading. The solid lines represent constant Cp,N,

and the dashed lines represent constant heat exchanger effective wall
temperatures. For a 500,000 pound airplane the reactor maximum wall
temperature must be increased from about 1600° to 2200° R if the
nacelle drag coefficient is increased from O to 0.2, which is a reason-
able value of Cp,N at this flight condition. For a fixed airplane
gross weight the nacelle drag reduces airplane lift-drag ratio.
Consequently, the engine must operate at a higher temperature to over-
come the increased drag. The following table lists L/D and Ty
against CD,N for one design point airplane.

Mp |Altitude Wg  [Cp,w| Tw Fp L/D
(£t) (1b) (°R)

1.5 | 50,000 | 372,000} O 2000 |41,400| 9(design)
.2 | 2430 | 56,500 6.58
.4 | 2800 | 71,500 5.2

Effect of reactor size. - In the previous analysis and discussion
no specific assumptions have been made regarding reactor size or shield
weight. The sum of the weight of reactor, shield, payload, and aux-
iliary equipment was arbitrarily assumed. Figure 22 is presented in
order to show the effect of reactor size on reactor unit heat release
Q/v, and airplane gross weight. The reactor diameter was varied from
2.0 to 5.0 feet, maintaining the length to diameter ratio of the
reactor at 1.0.
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An integral (wrap around) shield was assumed with & constant
2.5 foot thickness and a specific gravity of 8.0. The gross weight
required to carry the shield and a 30,000 pound payload plus aux-
iliary weight is plotted against the reactor unit heat release in
Btu per second per cubic inch of reactor. The heat exchanger
effective wall temperature is 2000° R, and the compressor pressure
ratio, heat exchanger inlet Mach number, and turbine-inlet tempera-
ture are optimum.

Reducing the reactor size below 2.5 feet does not materially
change the gross weight, but the reactor unit heat release increases
rapidly. Increasing the reactor size above 3.5 feet causes a rapid
increase in gross weight while the reactor unit heat release is not
so greatly affected. At low reactor diameters the unit heat release
is much greater for the 1.5 flight Mach number than for 0.9 Mach num-
ber, however, this difference decreases for larger reactors.

SUMMARY OF RESULTS

An analysis of the nuclear powered liguid-metal turbojet cycle is
presented for a wide range of engine operating conditions and for
several flight conditions. The following results were obtained from
the investigations:

l. For optimum compressor pressure ratio and turbine-inlet tempera-
ture, the optimum heat exchanger inlet Mach number ranges from 0.15 to
0.16 for a flight Mach number of 0.9 and heat exchanger effective wall
temperatures of 1400° to 2600° R. For a flight Mach number of 1.5, the
optimum heat exchanger inlet Mach number varies from 0.18 to 0.19 for
heat exchanger effective wall temperatures of 1200° to 2600° R.

2. The optimum compressor pressure ratio at optimum turbine-inlet
temperature varies from about 4.0 to 7.5 at altitudes of 30,000 and
50,000 feet at a flight Mach number of 0.9, for heat exchanger effect-
ive wall temperatures of 1400° to 2600° R. At a flight Mach number of
1.5, the optimum compressor pressure ratio varies from 2.5 to 5.5 for
heat exchanger effective wall temperatures from 1600 to 2600° R

3. The difference between the heat exchanger effective wall
temperature and the turbine-inlet temperature Ty -T3, varies from 150°
to 250° R for a flight Mach number of 0.9 for a range of T, from
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1600° to 2400° R. For a flight Mach number of 1.5, Tw-T3 varies from
150° R to 350° R for a range of T, from 1600° to 2600° R.

4. Engine and exchanger weight assumptions change the magnitude
of thrust per engine plus exchanger weight, but do not affect the
values of compressor pressure ratio, heat exchanger inlet Mach number,
and turbine-inlet temperature which give maximum thrust per engine plus
exchanger weight, provided that the engine weight is changed proportion-
ally at all pressure ratios and that the exchanger weight is assumed
to vary directly with air flow area and length-diameter ratio of the
flow passages.

5. Airplane gross weight at an altitude of 30,000 feet and Mach
numbers of 0.9 and 1.5 1s relatively insensitive to reactor maximum
wall temperatures as low as 1600° R. At 50,000 feet altitude and 0.9
Mach number, the airplane is insensitive to Tp as low as 1800° R and

at a Mach number of 1.5, Wg is insensitive to Tp as low as 2000° R.

6. Airplane gross weight is relatively insensitive to flight Mach
number, but reactor heat release increases rapidly with increasing
flight Mach number. Both airplane gross weight and reactor heat release
are insensitive to altitude below 35,000 feet, but increase rapidly with
increasing altitude above 35,000 feet.

7. TFor a flight Mach pumber of 1.5 at 50,000 feet altitude, nacelle
drag becomes very significant. For a 500,000 pound airplane the reactor
maximum wall temperature must be increased from 1600° to 2200° R if a
nacelle drag coefficient of 0.2 is taken into account.

Lewis Flight Propulsion Laboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohio
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APPENDIX A

Engine operating data was calculated and prepared in the form
of charts to aid in the analysis. The data is presented on a
corrected basis and includes compressor outlet temperature, turbine
pressure ratio, turbine outlet temperature, and engine net thrust
per pound of air per second neglecting nacelle drag.

Figure 22 shows corrected compressor outlet temperature as a
function of compressor pressure ratio. Figures 23 and 24 show turbine
pressure ratioc and corrected outlet temperature as a function of
corrected turbine-inlet temperature for a range of compressor pressure
ratios.

Figures 25(a) to 25(j) show the corrected engine net thrust per
pound of air per second for a range of corrected turbine-inlet tempera-
tures as a function of pressure ratio across the heat exchanger. Parts
(a) to (f) show the corrected net thrust per pound of air per second
for a flight Mach number of 0.9 at compressor pressure ratios of 1, 3,
5, 10, and 15. Parts (g) to (Jj) show the corrected net thrust per
pound of air per second at the same pressure ratios for a flight Mach
number of 1.5.
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APPENDIX B

A table of weights, sizes, and operating variables of the com-
ponents of the muclear powered ligquid-metal turbojet airplane is pre-
sented for Mach numbers of 0.9 and 1.5 at altitudes of 30,000 and
50,000 feet. The engine in all cases is operating with a heat
exchanger effective wall temperature of 2000° R and turbine-inlet
temperature of 1700° R. The heat exchanger inlet Mach number is
optimum and the compressor pressure ratio is close to optimum.
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Flight condition
Design altitude
Flight Mach number
Design point L/D

Operating point
Heat exchanger wall temperature, °OR
Turbine-inlet temperature, °R
Compressor pressure ratio

Component weights, 1b
Reactor shield, payload, aux. eq.
Engine
Heat exchangers
Airplane structure
Airplane gross weight

Reactor
Heat release, Btu/sec
Maximum wall temperature, °R
Lithium temperature in, °R
Lithium temperature out, °R
Lithium velocity, ft/sec

Engine
Net thrust per engine plus exchanger
weight, 1b/1b
Net thrust per air flow, 1b/1lb air/sec
Total engine air flow, lb/sec
Net engine thrust, 1b
Compressor frontal area, £t2

Heat exchanger
Lithium temperature in, °R
Lithium temperature out, °R
Air inlet Mach number
Air inlet temperature, °R
Air outlet temperature, °R
Air enthalpy rise, Btu/lb air
Core frontal area, ft2

30,000
0.9
18

2000
1700

190, 000
11,100

4,000
110,400
315,500

105,000
2050
1954
2046
15.6

1.17

38.2
457
17,500
37

2046
1954
0.162
804
1700
230

50,000
0.9
18

2000
1700

190,000
27,000

8,300
126,700
352,000

117,000
2050
195z
2048
16.8

0.506

40.6
492
20,100
100

2048
1952
0.16
766
1700
238
71

26

30,000
1.5

2000
1700
3.5

190, 000
13,900
5,900
113,000
322,800

248,000
2100
1910
2090
18.8

1.82

30.2
1180
35,800
49

2090
1910
0.19
886
1700
210

38

50,000
1.5

2000
1700
3.5

190, 000
37,500
13,700

129,800

371,000

280, 000
2150
1862
2138
13.8

0.803

32.7
1267
41,200
133

2138
1862
0.18
845
1700
221

111
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Reactor

Shield

Inlet & ' Coolant-to-air
diffuser heat exchanger V nozzle

Figure 1., - Schematic diagram of a liquid-metal nuclear powered turbojet engine.
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Figure 2. - Diffuser total pressure ratio as a function of flight Mach number.
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Figure 4. - Length to diameter parameter of heat exchanger tubes as a

function of exchanger-inlet air temperature, effective wall tempera-
ture, and exit air temperature.
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Figure 26.

against heat exchanger pressure ratio for a range of corrected turbine-inlet
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